Thursday, 21 September 2017

Exempel Of Både Linjär Regression Och Den Rörliga Medelvärden Och Utjämning Tekniker


Prognoser genom utjämningstekniker Den här webbplatsen är en del av JavaScript E-labs lärande objekt för beslutsfattande. Övriga JavaScript i denna serie kategoriseras under olika tillämpningsområden i MENU-sektionen på den här sidan. En tidsserie är en följd av observationer som beställs i tid. Inhämtande i insamlingen av data som tagits över tiden är någon form av slumpmässig variation. Det finns metoder för att minska avbrytandet av effekten på grund av slumpmässig variation. Bredt använda tekniker är utjämning. Dessa tekniker, när de tillämpas korrekt, avslöjar tydligare de underliggande trenderna. Ange tidsserierna Row-wise i följd, från början till vänster och parametrarna, och klicka sedan på knappen Beräkna för att få fram en prognos för en period framåt. Blanka rutor ingår inte i beräkningarna men nollor är. När du matar in data för att flytta från cell till cell i datmatrisen använder du inte knappen Tab eller pilar in. Funktioner av tidsserier, som kan avslöjas genom att granska dess graf. med de prognostiserade värdena och restbeteendet, förutsatt prognosmodellering. Flyttande medelvärden: Flyttande medelvärden rankas bland de mest populära teknikerna för förbehandling av tidsserier. De används för att filtrera slumpmässigt vitt brus från data, för att göra tidsserierna mjukare eller till och med för att betona vissa informationskomponenter som ingår i tidsserierna. Exponentiell utjämning: Detta är ett mycket populärt schema för att producera en slät Time Series. Medan i rörliga medelvärden viktas de senaste observationerna, exponentiell utjämning tilldelar exponentiellt minskande vikter som observationen blir äldre. Med andra ord ges de senaste observationerna relativt större vikt vid prognosen än de äldre observationerna. Dubbel exponentiell utjämning är bättre vid hantering av trender. Trippel exponentiell utjämning är bättre vid hantering av paraboltrender. Ett exponentiellt vägat glidande medelvärde med en utjämningskonstant a. motsvarar ungefär ett enkelt rörligt medelvärde av längd (dvs period) n, där a och n är relaterade till: a 2 (n1) ORn (2-a) a. Således skulle exempelvis ett exponentiellt vägt glidmedel med en utjämningskonstant lika med 0,1 motsvara ungefär ett 19 dagars glidande medelvärde. Och ett 40-dagars enkelt rörligt medelvärde skulle motsvara ungefär ett exponentiellt vägt rörligt medelvärde med en utjämningskonstant lika med 0,04878. Håller linjär exponentiell utjämning: Antag att tidsserierna är säsongsbetonade men visar visningstendens. Holts metod beräknar både nuvarande nivå och nuvarande trend. Observera att det enkla glidande medlet är ett speciellt fall av exponentiell utjämning genom att ställa in perioden för glidande medelvärde till heltalet av (2-alfa) alfa. För de flesta företagsdata är en Alpha-parameter som är mindre än 0,40 ofta effektiv. Man kan emellertid utföra en nätverkssökning av parameternummet, med 0,1 till 0,9, med steg om 0,1. Då har den bästa alfas det minsta genomsnittliga absoluta felet (MA-fel). Hur man jämför flera utjämningsmetoder: Även om det finns numeriska indikatorer för bedömning av prognosteknikens noggrannhet, är det mest använda sättet att använda en visuell jämförelse av flera prognoser för att bedöma deras noggrannhet och välja mellan olika prognosmetoder. I detta tillvägagångssätt måste man plotta (med användning av exempelvis Excel) på samma graf de ursprungliga värdena för en tidsserievariabel och de förutspådda värdena från flera olika prognosmetoder, vilket underlättar en visuell jämförelse. Du kanske gillar att använda tidigare prognoser med utjämningstekniker JavaScript för att få de senaste prognosvärdena baserade på utjämningstekniker som endast använder en parameter. Holt - och Winters-metoderna använder sig av två respektive tre parametrar, därför är det inte en lätt uppgift att välja de optimala eller till och med nära optimala värden genom försök och fel för parametrarna. Den enda exponentiella utjämningen betonar det korta perspektivet som ställer nivån till den sista observationen och baseras på förutsättningen att det inte finns någon trend. Den linjära regressionen, som passar en minsta kvadrera linje till historiska data (eller transformerade historiska data), representerar det långa intervallet, vilket är konditionerat för den grundläggande trenden. Hålen linjär exponentiell utjämning fångar information om den senaste trenden. Parametrarna i Holts-modellen är nivåparametrar som bör minskas när datamängden är stor, och trenderparametern bör ökas om den senaste trendriktningen stöds av orsakssambandsfaktorerna. Kortsiktiga prognoser: Observera att varje JavaScript på den här sidan ger en enstegs prognos. För att få en tvåstegs prognos. Lägg helt enkelt till det prognostiserade värdet till slutet av din tidsseriedata och klicka sedan på samma Calculate-knapp. Du kan upprepa denna process några gånger för att få de korta prognoser som behövs. Tidsseriemetoder Tidsseriemetoder är statistiska tekniker som utnyttjar historiska data som samlats över en tidsperiod. Tidsseriemetoder antar att det som inträffat i det förflutna kommer att fortsätta att ske i framtiden. Som namnetidsserierna föreslår, beräknar dessa metoder prognosen till endast en faktor - tid. De innefattar bland annat glidande medelvärde, exponentiell utjämning och linjär trendlinje och de är bland de mest populära metoderna för prognoser för kortdistans mellan service - och tillverkningsföretag. Dessa metoder antar att identifierbara historiska mönster eller trender för efterfrågan över tiden kommer att upprepa sig. Flyttande medelvärde En prognos för tidsserier kan vara så enkel som att använda efterfrågan under den aktuella perioden för att förutsäga efterfrågan under nästa period. Detta kallas ibland en naiv eller intuitiv prognos. 4 Till exempel, om efterfrågan är 100 enheter i veckan, är prognosen för nästa veckors efterfrågan 100 enheter om efterfrågan visar sig vara 90 enheter istället, då efterfrågan på följande veckor är 90 enheter, och så vidare. Denna typ av prognostiseringsmetod tar inte hänsyn till historiskt efterfrågan beteende som det endast bygger på efterfrågan under den aktuella perioden. Det reagerar direkt på de normala, slumpmässiga rörelserna i efterfrågan. Den enkla glidande metoden använder flera efterfrågningsvärden under det senaste förflutet för att utveckla en prognos. Detta tenderar att dämpa eller släta ut de slumpmässiga ökar och minskar en prognos som endast använder en period. Det enkla glidande medlet är användbart för att förutse efterfrågan som är stabil och uppvisar inte något uttalat efterfrågan, såsom en trend eller ett säsongsmönster. Flytta medelvärden beräknas för specifika perioder, till exempel tre månader eller fem månader, beroende på hur mycket prognosen önskar släta efterfrågningsdata. Ju längre den rörliga genomsnittliga perioden, ju mjukare blir det. Formeln för att beräkna det enkla glidande genomsnittet är att beräkna ett enkelt rörligt medelvärde. Instant Paper Clip Office Supply Company säljer och levererar kontorsmaterial till företag, skolor och byråer inom en 50-mils radie av sitt lager. Kontorsleveransverksamheten är konkurrenskraftig och möjligheten att leverera order snabbt är en faktor för att få nya kunder och hålla gamla. (Kontor beställer vanligtvis inte när de är låga på leveranser, men när de slutar helt. Därför behöver de sina beställningar omedelbart.) Företagets chef vill vara säker med tillräckligt många förare och fordon är tillgängliga för att snabbt kunna leverera order och De har tillräcklig inventering i lager. Därför vill chefen kunna förutse antalet order som kommer att inträffa under nästa månad (det vill säga för att prognostisera efterfrågan på leveranser). Från register över leveransorder har ledningen ackumulerat följande data under de senaste 10 månaderna, från vilken man vill beräkna 3- och 5-månaders glidande medelvärden. Låt oss anta att det är slutet av oktober. Prognosen som följer av antingen 3- eller 5-månaders glidande medelvärde är typiskt för nästa månad i sekvensen, vilket i det här fallet är november. Det glidande medelvärdet beräknas från efterfrågan på order under de föregående 3 månaderna i sekvensen enligt följande formel: 5-månaders glidande medelvärde beräknas från de föregående 5 månaderna av efterfrågningsdata enligt följande: 3- och 5-månaders Flyttande genomsnittliga prognoser för alla månader av efterfrågadata visas i följande tabell. Faktum är att endast prognosen för november baserat på den senaste månatliga efterfrågan skulle användas av chefen. De tidigare prognoserna för tidigare månader tillåter oss emellertid att jämföra prognosen med den faktiska efterfrågan för att se hur exakt prognosmetoden är - det vill säga hur bra det gör. Tre - och femmånadersgenomsnitt Både glidande genomsnittliga prognoser i tabellen ovan tenderar att släta ut variabiliteten i de faktiska uppgifterna. Denna utjämningseffekt kan observeras i följande figur där 3-månaders - och 5-månadsgenomsnittet har överlagts på en graf av de ursprungliga data: 5-månaders glidande medelvärde i föregående figur släpper ut fluktuationer i större utsträckning än 3 månaders glidande medelvärde. 3-månadersgenomsnittet återspeglar dock de senaste uppgifterna som finns tillgängliga för kontorsleverantören. I allmänhet är prognoser som använder det längre glidande genomsnittet långsammare att reagera på de senaste förändringarna i efterfrågan än de som gjordes med hjälp av kortare glidande medelvärden. De extra dataperioderna dämpar den hastighet som prognosen svarar på. Att fastställa lämpligt antal perioder att använda i en glidande genomsnittlig prognos kräver ofta en viss mängd försök och felprov. Nackdelen med den glidande genomsnittliga metoden är att den inte reagerar på variationer som uppstår av en orsak, såsom cykler och säsongseffekter. Faktorer som orsakar förändringar ignoreras generellt. Det är i princip en mekanisk metod som speglar historiska data på ett konsekvent sätt. Emellertid har den glidande genomsnittliga metoden fördelen att det är lätt att använda, snabbt och relativt billigt. I allmänhet kan denna metod ge en bra prognos på kort sikt, men det bör inte skjutas för långt in i framtiden. Viktat rörande medelvärde Den glidande genomsnittliga metoden kan justeras för att bättre reflektera fluktuationer i data. I den viktade glidande medelvärdet tilldelas vikter till de senaste data enligt följande formel: Efterfrågadata för PM Computer Services (visad i tabellen för Exempel 10.3) verkar följa en ökande linjär trend. Företaget vill beräkna en linjär trendlinje för att se om den är mer exakt än exponentiella utjämning och justerade exponentiella utjämningsprognoser som utvecklats i exempel 10.3 och 10.4. De värden som krävs för minsta kvadratberäkningarna är följande: Med dessa värden beräknas parametrarna för linjär trendlinje enligt följande: Därför är linjär trendlinjekvation Att beräkna en prognos för period 13, låt x 13 i linjär trendlinje: Nedanstående diagram visar linjär trendlinje jämfört med aktuella data. Trendslinjen verkar tydligt återspegla de faktiska uppgifterna, det vill säga vara en bra passform, och skulle därmed vara en bra prognosmodell för detta problem. En nackdel med den linjära trenderlinjen är emellertid att den inte kommer att anpassas till en förändring i trenden, eftersom de exponentiella utjämningsprognosmetoderna kommer att det antas att alla framtida prognoser kommer att följa en rak linje. Detta begränsar användningen av denna metod till en kortare tidsram där du kan vara relativt säker på att trenden inte kommer att förändras. Säsongsjusteringar Ett säsongsmönster är en repetitiv ökning och minskning av efterfrågan. Många efterfrågan förekommer med säsongsbeteende. Klädförsäljningen följer årliga säsongsmönster, med efterfrågan på varma kläder ökar på hösten och vintern och sjunker under våren och sommaren då efterfrågan på svalare kläder ökar. Efterfrågan på många detaljhandelsvaror, inklusive leksaker, sportutrustning, kläder, elektroniska apparater, skinka, kalkoner, vin och frukt, ökar under semesterperioden. Efterfrågan på hälsokort ökar i samband med speciella dagar som Alla hjärtans dag och mors dag. Säsongsmönster kan också ske varje månad, veckovis eller till och med dagligen. Vissa restauranger har högre efterfrågan på kvällen än vid lunch eller på helgerna i motsats till vardagar. Trafik - därmed försäljning - på köpcentra hämtar på fredag ​​och lördag. Det finns flera metoder för att reflektera säsongsmönster i en prognos för tidsserier. Vi beskriver en av de enklare metoderna med en säsongsbetonad faktor. En säsongsfaktor är ett numeriskt värde som multipliceras med den normala prognosen för att få en säsongrensad prognos. En metod för att utveckla en efterfrågan på säsongsbetonade faktorer är att dela efterfrågan på varje säsongsperiod efter total årlig efterfrågan enligt följande formel: De resulterande säsongsfaktorerna mellan 0 och 1,0 är i själva verket den del av den totala årliga efterfrågan som tilldelas varje säsong. Dessa säsongsfaktorer multipliceras med den årliga prognostiserade efterfrågan för att ge anpassade prognoser för varje säsong. Beräkna ett prognos med säsongsjusteringar. Wishbone Farms växer kalkoner för att sälja till köttbearbetningsföretag under hela året. Men högsäsongen är uppenbarligen under fjärde kvartalet, från oktober till december. Wishbone Farms har upplevt efterfrågan på kalkoner under de senaste tre åren som visas i följande tabell: Eftersom vi har tre års efterfrågadata kan vi beräkna säsongsfaktorerna genom att dela den totala kvartalsbehovet för de tre åren med total efterfrågan under alla tre år : Sedan vill vi multiplicera den prognostiserade efterfrågan på nästa år, 2000, genom varje säsongsfaktor för att få den prognostiserade efterfrågan för varje kvartal. För att uppnå detta behöver vi en efterfråganprognos för 2000. I det här fallet, eftersom efterfrågadata i tabellen verkar uppvisa en generellt ökande trend, beräknar vi en linjär trendlinje för de tre års data i tabellen för att bli grov prognosuppskattning: Prognosen för 2000 är således 58,17 eller 58,170 kalkoner. Med hjälp av denna årliga prognosen för efterfrågan jämförs de säsongrensade prognoserna, SF i, för år 2000 med jämförelse av dessa kvartalsprognoser med de faktiska efterfrågningsvärdena i tabellen, de verkar vara relativt goda prognosberäkningar som återspeglar både säsongsvariationerna i data och den allmänna uppåtgående trenden. 10-12. Hur är den glidande medelmetoden som liknar exponentiell utjämning 10-13. Vilken effekt på exponentiell utjämningsmodell kommer att öka utjämningskonstanten har 10-14. Hur skiljer sig justerad exponentiell utjämning från exponentiell utjämning 10-15. Vad bestämmer valet av utjämningskonstanten för trend i en justerad exponentiell utjämningsmodell 10-16. I kapitelexemplen för tidsseriemetoder antogs startprognosen alltid vara densamma som den faktiska efterfrågan under den första perioden. Föreslå andra sätt att startprognosen kan härledas vid faktisk användning. 10-17. Hur skiljer den linjära trendlinjeprognosmodellen från en linjär regressionsmodell för prognoser 10-18. Av de tidsseriemodeller som presenteras i detta kapitel, inklusive det glidande medelvärdet och det vägda glidande medlet, exponentiell utjämning och justerad exponentiell utjämning och linjär trendlinje, vilken anser du bäst Varför 10-19. Vilka fördelar har justerad exponentiell utjämning över en linjär trendlinje för prognostiserad efterfrågan som uppvisar en trend 4 K. B. Kahn och J. T. Mentzer, prognoser inom konsument - och industrimarknaderna, Journal of Business Forecasting 14, nr. 2 (sommaren 1995): 21-28.3 Förstå prognosnivåer och metoder Du kan generera både prognoser för detaljinfo och sammanfattningar (produktlinje) som speglar produktbehovsmönster. Systemet analyserar tidigare försäljning för att beräkna prognoser genom att använda 12 prognosmetoder. Prognoserna innehåller detaljerad information på objektnivå och högre nivåinformation om en filial eller företaget som helhet. 3.1 Prognos för prestationsutvärderingskriterier Beroende på valet av bearbetningsalternativ och trender och mönster i försäljningsdata, utförs vissa prognosmetoder bättre än andra för en viss historisk dataset. En prognosmetod som är lämplig för en produkt kanske inte är lämplig för en annan produkt. Det kan hända att en prognosmetod som ger goda resultat i ett skede av en produkts livscykel är lämplig under hela livscykeln. Du kan välja mellan två metoder för att utvärdera nuvarande prestanda för prognosmetoderna: Procent av noggrannhet (POA). Medel absolut avvikelse (MAD). Båda dessa prestationsbedömningsmetoder kräver historiska försäljningsdata för en period du anger. Denna period kallas en uthållningsperiod eller period med bästa passform. Uppgifterna under denna period används som grund för att rekommendera vilken prognosmetod som ska användas vid nästa prognosprojektion. Denna rekommendation är specifik för varje produkt och kan ändras från en prognosproduktion till nästa. 3.1.1 Bästa passform Systemet rekommenderar den bästa anpassningsprognosen genom att använda de valda prognosmetoderna till tidigare försäljningsorderhistorik och jämföra prognosimuleringen till den aktuella historiken. När du genererar en bästa anpassningsprognos jämförs systemet faktiska försäljningsorderhistorier med prognoser för en viss tidsperiod och beräknar hur exakt varje olika prognosmetod förutspådde försäljningen. Då rekommenderar systemet att den mest exakta prognosen är den bästa passformen. Denna grafik illustrerar bästa passformsprognoser: Figur 3-1 Bästa passformsprognos Systemet använder denna stegsekvens för att bestämma bästa passformen: Använd varje specificerad metod för att simulera en prognos för hållbarhetsperioden. Jämför den faktiska försäljningen till de simulerade prognoserna för hållbarhetsperioden. Beräkna POA eller MAD för att bestämma vilken prognosmetod som ligger närmast den tidigare faktiska försäljningen. Systemet använder antingen POA eller MAD, baserat på de behandlingsalternativ som du väljer. Rekommendera en lämplig prognos för POA som är närmast 100 procent (över eller under) eller MAD som är närmast noll. 3.2 Prognosmetoder JD Edwards EnterpriseOne Forecast Management använder 12 metoder för kvantitativ prognos och anger vilken metod som passar bäst för prognosläget. Det här avsnittet diskuterar: Metod 1: Procent under förra året. Metod 2: Beräknad procentsats under förra året. Metod 3: Förra året till det här året. Metod 4: Flyttande medelvärde. Metod 5: Linjär approximation. Metod 6: Minsta kvadratregression. Metod 7: Tillnärmning av andra graden. Metod 8: Flexibel metod. Metod 9: Viktat rörande medelvärde. Metod 10: Linjär utjämning. Metod 11: Exponentiell utjämning. Metod 12: Exponentiell utjämning med trend och säsonglighet. Ange den metod som du vill använda i behandlingsalternativen för prognosgenereringsprogrammet (R34650). De flesta av dessa metoder ger begränsad kontroll. Exempelvis kan vikten på senaste historiska data eller datumintervallet för historiska data som används i beräkningarna specificeras av dig. Exemplen i guiden anger beräkningsförfarandet för var och en av de tillgängliga prognosmetoderna, med en identisk uppsättning historiska data. Metodsexemplen i guiden använder en del eller alla dessa datasatser, vilket är historiska data från de senaste två åren. Prognosprojektionen går in i nästa år. Försäljningshistorikdata är stabila med små säsongsökningar i juli och december. Detta mönster är karakteristiskt för en mogen produkt som kan närma sig föryngring. 3.2.1 Metod 1: Procent under förra året Denna metod använder formeln Percent Over Last Year för att multiplicera varje prognosperiod med angiven procentuell ökning eller minskning. För att prognostisera efterfrågan kräver denna metod antalet perioder för bästa passform plus ett års försäljningshistoria. Denna metod är användbar för att prognostisera efterfrågan på säsongsvaror med tillväxt eller minskning. 3.2.1.1 Exempel: Metod 1: Procent över fjolåret Procenten över fjolårets formel multiplicerar försäljningsdata från föregående år med en faktor du anger och sedan projekt som resulterar under nästa år. Denna metod kan vara användbar vid budgetering för att simulera påverkan av en viss tillväxttakt eller när försäljningshistoriken har en betydande säsongskomponent. Prognosspecifikationer: Multiplikationsfaktor. Ange till exempel 110 i bearbetningsalternativet för att öka de tidigare årens försäljningshistorikdata med 10 procent. Erforderlig försäljningshistorik: Ett år för beräkning av prognosen plus antal tidsperioder som krävs för att utvärdera prognosprestandan (perioder med bästa passform) som du anger. Denna tabell är historia som används i prognosberäkningen: Februari-prognosen motsvarar 117 gånger 1,1 128,7 avrundad till 129. Marsprognosen motsvarar 115 gånger 1,1 126,5 avrundad till 127. 3.2.2 Metod 2: Beräknad procentsats under förra året Denna metod använder den beräknade procentsatsen över Förra året formel för att jämföra den tidigare försäljningen av specificerade perioder till försäljning från samma perioder föregående år. Systemet bestämmer en procentuell ökning eller minskning, och multiplicerar sedan varje period med procentandelen för att bestämma prognosen. För att prognostisera efterfrågan kräver denna metod antalet perioder med orderorderhistorik plus ett års försäljningshistorik. Denna metod är användbar för att förutspå kortfristig efterfrågan på säsongsvaror med tillväxt eller nedgång. 3.2.2.1 Exempel: Metod 2: Beräknad procentsats under förra året Beräknad procentsats Över fjolårets formel multiplicerar försäljningsdata från föregående år med en faktor som beräknas av systemet och sedan projekterar det resultatet för nästa år. Den här metoden kan vara användbar för att projicera inverkan på att förlänga den senaste tillväxttakten för en produkt till nästa år, samtidigt som man behåller ett säsongsmönster som finns i försäljningshistoriken. Prognosspecifikationer: Omsättning av försäljningshistoria som ska användas vid beräkning av tillväxten. Till exempel, specificera n är lika med 4 i bearbetningsalternativet för att jämföra försäljningshistorik för de senaste fyra perioderna till samma fyra perioder föregående år. Använd det beräknade förhållandet för att göra projiceringen för nästa år. Erforderlig försäljningshistoria: Ett år för beräkning av prognosen plus antal tidsperioder som krävs för att utvärdera prognosprestandan (perioder med bästa passform). Denna tabell är historia som används i prognosberäkningen, givet n 4: Februari-prognosen motsvarar 117 gånger 0,9766 114,26 avrundad till 114. Marsprognosen motsvarar 115 gånger 0,9766 112,31 avrundad till 112. 3.2.3 Metod 3: Förra året till i år Denna metod använder Förra årets försäljning för nästa års prognos. För att prognostisera efterfrågan kräver denna metod det antal perioder som passar bäst, plus ett års orderorderhistorik. Denna metod är användbar för att prognostisera efterfrågan på mogna produkter med efterfrågan på efterfrågan eller säsongens efterfrågan utan en trend. 3.2.3.1 Exempel: Metod 3: Förra året till det här året Det senaste året till årets formel kopierar försäljningsdata från föregående år till nästa år. Denna metod kan vara användbar vid budgetering för att simulera försäljningen på nuvarande nivå. Produkten är mogen och har ingen trend på lång sikt, men det kan finnas ett betydande säsongsmönster. Prognosspecifikationer: Ingen. Erforderlig försäljningshistoria: Ett år för beräkning av prognosen plus antal tidsperioder som krävs för att utvärdera prognosprestandan (perioder med bästa passform). Denna tabell är historia som används i prognosberäkningen: Januari-prognosen motsvarar januari förra året med ett prognosvärde på 128. Februari-prognosen motsvarar februari i fjol med ett prognosvärde på 117. Marsprognosen är lika med mars i fjol med ett prognostiskt värde av 115. 3.2.4 Metod 4: Flyttande medelvärde Med denna metod används den rörliga genomsnittsformeln för att medge det angivna antalet perioder för att projicera nästa period. Du bör räkna om det ofta (månadsvis eller åtminstone kvartalsvis) för att återspegla förändrad efterfråganivå. För att prognostisera efterfrågan kräver denna metod att antalet perioder passar bäst, plus antalet perioder med orderorderhistorik. Denna metod är användbar för att förutse efterfrågan på mogna produkter utan en trend. 3.2.4.1 Exempel: Metod 4: Flytta genomsnittligt rörligt medelvärde (MA) är en populär metod för att medelvärda resultaten av den senaste försäljningshistoriken för att bestämma en prognos på kort sikt. MA prognosmetoden ligger bakom trenderna. Prognosfel och systematiska fel uppstår när produktförsäljningshistoriken uppvisar stark trend eller säsongsmönster. Denna metod fungerar bättre för kortvariga prognoser för mogna produkter än för produkter som ligger i livscykelns tillväxt eller föråldrade stadier. Prognosspecifikationer: n motsvarar antalet försäljningsperioder som ska användas i prognosberäkningen. Ange till exempel n 4 i bearbetningsalternativet för att använda de senaste fyra perioderna som grund för projiceringen till nästa tidsperiod. Ett stort värde för n (som 12) kräver mer försäljningshistoria. Det resulterar i en stabil prognos, men är långsamt att känna igen skift i försäljningsnivån. Omvänt är ett litet värde för n (som 3) snabbare att svara på förändringar i försäljningsnivån, men prognosen kan fluktuera så mycket att produktionen inte kan svara på variationerna. Nödvändig försäljningshistorik: n plus antal tidsperioder som krävs för att utvärdera prognosprestandan (perioder med bästa passform). Denna tabell är historia som används i prognosberäkningen: Februari-prognosen är lika med (114 119 137 125) 4 123,75 avrundad till 124. Marsprognosen är lika med (119 137 125 124) 4 126.25 avrundad till 126. 3.2.5 Metod 5: Linjär approximation Denna metod använder den linjära approximationsformeln för att beräkna en trend från antalet perioder av orderorderhistorik och att projicera denna trend till prognosen. Du bör omräkna trenden månadsvis för att upptäcka förändringar i trender. Denna metod kräver antalet perioder med bäst passform plus antal specificerade perioder av orderorderhistorik. Denna metod är användbar för att prognostisera efterfrågan på nya produkter eller produkter med konsekventa positiva eller negativa trender som inte beror på säsongsvariationer. 3.2.5.1 Exempel: Metod 5: Linjär approximation Linjär approximation beräknar en trend som baseras på två försäljningshistoriska datapunkter. Dessa två punkter definierar en rak trendlinje som projiceras in i framtiden. Använd denna metod med försiktighet eftersom långdistansprognoser utnyttjas av små förändringar på bara två datapunkter. Prognosspecifikationer: n motsvarar datapunktet i försäljningshistorik som jämförs med den senaste datapunkten för att identifiera en trend. Ange till exempel n 4 för att använda skillnaden mellan december (senaste uppgifterna) och augusti (fyra perioder före december) som grund för beräkningen av trenden. Minimikrav på försäljningshistorik: n plus 1 plus antal tidsperioder som krävs för att utvärdera prognosprestandan (perioder med bästa passform). Denna tabell är historia som används i prognosberäkningen: Januariprognos december förra året 1 (Trend), som är 137 (1 gånger 2) 139. Februari prognos december förra året 1 (Trend) vilket är 137 (2 gånger 2) 141. Marsprognos december förra året 1 (Trend), som är lika med 137 (3 gånger 2) 143. 3.2.6 Metod 6: Minsta kvadratregression Metoden för minsta kvadratregression (LSR) härleder en ekvation som beskriver ett raklinjeläge mellan historiska försäljningsdata och tidens gång. LSR passar en linje till det valda datamängden så att summan av kvadraterna för skillnaderna mellan de faktiska försäljningsdatapunkterna och regressionslinjen minimeras. Prognosen är en projicering av denna raka linje i framtiden. Denna metod kräver försäljningsdatahistorik för perioden som representeras av antalet perioder som passar bäst och det angivna antalet historiska datoperioder. Minimikravet är två historiska datapunkter. Denna metod är användbar för att förutse efterfrågan när en linjär trend är i data. 3.2.6.1 Exempel: Metod 6: Minsta kvadratregression Linjär regression eller LAST-kvadratregression (LSR) är den mest populära metoden för att identifiera en linjär trend i historiska försäljningsdata. Metoden beräknar värdena för a och b som ska användas i formeln: Denna ekvation beskriver en rak linje, där Y representerar försäljning och X representerar tid. Linjär regression är långsam att känna igen vändpunkter och stegfunktionsskift i efterfrågan. Linjär regression passar en rak linje till data, även om data är säsongsbetonad eller bättre beskrivs av en kurva. När försäljningshistorikdata följer en kurva eller har ett starkt säsongsmönster uppträder prognosfel och systematiska fel. Prognosspecifikationer: n är lika med försäljningshistorikperioderna som kommer att användas vid beräkning av värdena för a och b. Ange till exempel n 4 för att använda historiken från september till december som grund för beräkningarna. När data finns tillgängligt, skulle en större n (såsom n 24) normalt användas. LSR definierar en rad för så få som två datapunkter. För detta exempel valdes ett litet värde för n (n 4) för att minska de manuella beräkningarna som krävs för att verifiera resultaten. Minimikrav på försäljningshistorik: n perioder plus antal tidsperioder som krävs för att utvärdera prognosprestandan (perioder med bästa passform). Denna tabell är historia som används i prognosberäkningen: Marsprognosen motsvarar 119,5 (7 gånger 2,3) 135,6 avrundad till 136. 3.2.7 Metod 7: Andra grader Approximation För att projicera prognosen använder denna metod andra grader approximationsformeln för att plotta en kurva Det är baserat på antalet försäljningsperioder. Denna metod kräver antalet perioder som passar bäst, plus antalet perioder av försäljningsorderhistorik gånger tre. Denna metod är inte användbar för att prognostisera efterfrågan på en långsiktig period. 3.2.7.1 Exempel: Metod 7: Andra graden approximation Linjär regression bestämmer värdena för a och b i prognosformeln Y a b X med målet att anpassa en rak linje till försäljningshistorikdata. Andra grader Approximation är likartad, men den här metoden bestämmer värdena för a, b och c i den här prognosformeln: Y a b X c X 2 Syftet med denna metod är att passa en kurva till försäljningshistorikdata. Denna metod är användbar när en produkt är i övergången mellan livscykelstadier. Till exempel, när en ny produkt flyttar från introduktion till tillväxtstadier, kan försäljningsutvecklingen accelereras. På grund av den andra orderperioden kan prognosen snabbt närma sig oändligheten eller släppa till noll (beroende på om koefficienten c är positiv eller negativ). Denna metod är endast användbar på kort sikt. Prognosspecifikationer: Formeln hitta a, b och c för att passa en kurva till exakt tre punkter. Du anger n, antalet tidsperioder för data som ackumuleras i var och en av de tre punkterna. I detta exempel, n 3. Faktiska försäljningsdata för april till juni kombineras till första punkten, Q1. Juli till september läggs samman för att skapa Q2 och oktober till december summa till Q3. Kurvan är monterad på de tre värdena Q1, Q2 och Q3. Erforderlig försäljningshistorik: 3 gånger n perioder för beräkning av prognosen plus antal tidsperioder som krävs för att utvärdera prognosprestandan (perioder med bästa passform). Denna tabell är historia som används i prognosberäkningen: Q0 (Jan) (Feb) (Mar) Q1 (Apr) (Maj) (Jun) vilket motsvarar 125 122 137 384 Q2 (Jul) (Aug) (Sep), vilket är lika med 140 129 131 400 Q3 (okt) (nov) (dec) vilket är lika med 114 119 137 370 Nästa steg innebär att de tre koefficienterna a, b och c används för att användas i prognosformeln Y ab X c X 2. Q1, Q2 och Q3 presenteras på grafiken, där tiden är planerad på den horisontella axeln. Q1 representerar total historisk försäljning för april, maj och juni och är plottad på X 1 Q2 motsvarar juli till september Q3 motsvarar oktober till december och Q4 representerar januari till mars. Figur 3-2 Plottning Q1, Q2, Q3 och Q4 för approximering av andra grader Tre ekvationer beskriver de tre punkterna på diagrammet: (1) Q1, Q2, Q3 och Q4 för andra graders approximation: Figur 3-2 en bX cX 2 där X 1 (Q1 abc) (2) Q2 en bX cX2 där X2 (Q2 a2b4c) (3) Q3 en bX cX2 där X3 (Q3 a 3b 9c) Lös de tre ekvationerna samtidigt för att hitta b, a och c: Subtrahera ekvation 1 (1) från ekvation 2 (2) och lösa för b: (2) ndash (1) Q2 ndash Q1 b 3c b (Q2 ndash Q1) ndash 3c Ersätt denna ekvation för b till ekvation (3): (3) Q3 a 3 (Q2 ndash Q1) ndash 3c 9c a Q3 ndash 3 (Q2 ndash Q1) Äntligen ersätt dessa ekvationer för a och b till ekvation (1): (1) Q3 ndash 3 (Q2 ndash Q1) (Q2 ndash Q1) ndash 3c c Q1c (Q3 ndash Q2) (Q1 ndash Q2) 2 Den andra graden approximationsmetoden beräknar a, b och c enligt följande: en Q3 ndash 3 (Q2 ndash Q1 ) 370 ndash 3 (400 ndash 384) 370 ndash 3 (16) 322 b (Q2 ndash Q1) ndash3c (400 nda sh 384) ndash (3 gånger ndash23) 16 69 85 c (Q3 ndash Q2) (Q1 ndash Q2) 2 (370 ndash 400) (384 ndash 400) 2 ndash23 Detta är en beräkning av approximationsprognos för andra graden: Y a bX cX 2 322 85X (ndash23) (X 2) När X 4, Q4 322 340 ndash 368 294. Prognosen motsvarar 294 3 98 per period. När X 5, Q5 322 425 ndash 575 172. Prognosen motsvarar 172 3 58,33 avrundad till 57 per period. När X 6, Q6 322 510 ndash 828 4. Prognosen är lika med 4 3 1,33 avrundad till 1 per period. Detta är prognosen för nästa år, förra året till det här året: 3.2.8 Metod 8: Flexibel metod Med den här metoden kan du välja det passande antal perioder av orderorderhistorik som börjar n månader före prognosens startdatum och till tillämpa en procentuell ökning eller minskning av multiplikationsfaktorn för att ändra prognosen. Denna metod liknar Metod 1, Procent över förra året, förutom att du kan ange antalet perioder som du använder som bas. Beroende på vad du väljer som n kräver denna metod perioder som passar bäst och antalet perioder med försäljningsdata som anges. Denna metod är användbar för att förutse efterfrågan på en planerad trend. 3.2.8.1 Exempel: Metod 8: Flexibel metod Den flexibla metoden (Procent över n månader tidigare) liknar Metod 1, Procent över förra året. Båda metoderna multiplicerar försäljningsdata från en tidigare tidsperiod med en faktor som specificeras av dig och sedan projekterar det resultatet i framtiden. I Procenten över senaste årmetoden är projiceringen baserad på data från samma period föregående år. Du kan också använda den flexibla metoden för att ange en tidsperiod, annan än samma period det senaste året, för att använda som underlag för beräkningarna. Multiplikationsfaktor. Ange till exempel 110 i bearbetningsalternativet för att öka tidigare försäljningshistorikdata med 10 procent. Basperiod Till exempel orsakar n 4 den första prognosen baseras på försäljningsdata i september förra året. Minimikrav på försäljningshistorik: Antalet perioder tillbaka till basperioden plus antal tidsperioder som krävs för att utvärdera prognosprestandan (perioder med bästa passform). Den här tabellen är historia som används i prognosberäkningen: 3.2.9 Metod 9: Viktad Flyttande Genomsnitt Den viktade Flytta genomsnittliga formeln liknar Metod 4, Flyttande medelformel, eftersom den genomsnittlig försäljningshistorik för föregående månader för att projicera nästa månads försäljningshistorik. Med denna formel kan du dock tilldela vikter för varje tidigare period. Denna metod kräver antalet viktiga perioder som valts plus antalet perioder som passar bäst i data. På samma sätt som rörande medelvärde ligger denna metod bakom efterfrågan trender, så den här metoden rekommenderas inte för produkter med starka trender eller säsongsmässiga egenskaper. Denna metod är användbar för att prognostisera efterfrågan på mogna produkter med en efterfrågan som är relativt nivå. 3.2.9.1 Exempel: Metod 9: Vägt rörlig medelvärde Den viktade rörliga genomsnittsmetoden (WMA) liknar Metod 4, Flyttande medelvärde (MA). Du kan dock tilldela ojämna vikter till historiska data när du använder WMA. Metoden beräknar ett vägt genomsnitt av den senaste försäljningshistoriken för att komma fram till en prognos på kort sikt. Nyare data tilldelas vanligtvis en större vikt än äldre data, så WMA är mer mottaglig för skift i försäljningsnivån. Men prognosfel och systematiska fel uppstår när produktförsäljningshistoriken uppvisar starka trender eller säsongsmönster. Denna metod fungerar bättre för korta prognoser för mogna produkter än för produkter i livscykelns tillväxt eller föråldrade stadier. Antalet försäljningshistorikperioder (n) som ska användas i prognosberäkningen. For example, specify n 4 in the processing option to use the most recent four periods as the basis for the projection into the next time period. Ett stort värde för n (som 12) kräver mer försäljningshistoria. Such a value results in a stable forecast, but it is slow to recognize shifts in the level of sales. Conversely, a small value for n (such as 3) responds more quickly to shifts in the level of sales, but the forecast might fluctuate so widely that production cannot respond to the variations. The total number of periods for the processing option rdquo14 - periods to includerdquo should not exceed 12 months. The weight that is assigned to each of the historical data periods. The assigned weights must total 1.00. For example, when n 4, assign weights of 0.50, 0.25, 0.15, and 0.10 with the most recent data receiving the greatest weight. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: January forecast equals (131 times 0.10) (114 times 0.15) (119 times 0.25) (137 times 0.50) (0.10 0.15 0.25 0.50) 128.45 rounded to 128. February forecast equals (114 times 0.10) (119 times 0.15) (137 times 0.25) (128 times 0.50) 1 127.5 rounded to 128. March forecast equals (119 times 0.10) (137 times 0.15) (128 times 0.25) (128 times 0.50) 1 128.45 rounded to 128. 3.2.10 Method 10: Linear Smoothing This method calculates a weighted average of past sales data. In the calculation, this method uses the number of periods of sales order history (from 1 to 12) that is indicated in the processing option. The system uses a mathematical progression to weigh data in the range from the first (least weight) to the final (most weight). Then the system projects this information to each period in the forecast. This method requires the months best fit plus the sales order history for the number of periods that are specified in the processing option. 3.2.10.1 Example: Method 10: Linear Smoothing This method is similar to Method 9, WMA. I stället för att godtyckligt tilldela vikter till historiska data används en formel för att tilldela vikter som faller linjärt och summan till 1,00. Metoden beräknar sedan ett vägt genomsnitt av den senaste försäljningshistoriken för att komma fram till en prognos på kort sikt. Like all linear moving average forecasting techniques, forecast bias and systematic errors occur when the product sales history exhibits strong trend or seasonal patterns. This method works better for short range forecasts of mature products than for products in the growth or obsolescence stages of the life cycle. n equals the number of periods of sales history to use in the forecast calculation. For example, specify n equals 4 in the processing option to use the most recent four periods as the basis for the projection into the next time period. The system automatically assigns the weights to the historical data that decline linearly and sum to 1.00. For example, when n equals 4, the system assigns weights of 0.4, 0.3, 0.2, and 0.1, with the most recent data receiving the greatest weight. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: 3.2.11 Method 11: Exponential Smoothing This method calculates a smoothed average, which becomes an estimate representing the general level of sales over the selected historical data periods. This method requires sales data history for the time period that is represented by the number of periods best fit plus the number of historical data periods that are specified. The minimum requirement is two historical data periods. This method is useful to forecast demand when no linear trend is in the data. 3.2.11.1 Example: Method 11: Exponential Smoothing This method is similar to Method 10, Linear Smoothing. In Linear Smoothing, the system assigns weights that decline linearly to the historical data. In Exponential Smoothing, the system assigns weights that exponentially decay. The equation for Exponential Smoothing forecasting is: Forecast alpha (Previous Actual Sales) (1 ndashalpha) (Previous Forecast) The forecast is a weighted average of the actual sales from the previous period and the forecast from the previous period. Alpha is the weight that is applied to the actual sales for the previous period. (1 ndash alpha) is the weight that is applied to the forecast for the previous period. Values for alpha range from 0 to 1 and usually fall between 0.1 and 0.4. The sum of the weights is 1.00 (alpha (1 ndash alpha) 1). You should assign a value for the smoothing constant, alpha. If you do not assign a value for the smoothing constant, the system calculates an assumed value that is based on the number of periods of sales history that is specified in the processing option. alpha equals the smoothing constant that is used to calculate the smoothed average for the general level or magnitude of sales. Values for alpha range from 0 to 1. n equals the range of sales history data to include in the calculations. Generally, one year of sales history data is sufficient to estimate the general level of sales. For this example, a small value for n (n 4) was chosen to reduce the manual calculations that are required to verify the results. Exponential Smoothing can generate a forecast that is based on as little as one historical data point. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: 3.2.12 Method 12: Exponential Smoothing with Trend and Seasonality This method calculates a trend, a seasonal index, and an exponentially smoothed average from the sales order history. The system then applies a projection of the trend to the forecast and adjusts for the seasonal index. This method requires the number of periods best fit plus two years of sales data, and is useful for items that have both trend and seasonality in the forecast. You can enter the alpha and beta factor, or have the system calculate them. Alpha and beta factors are the smoothing constant that the system uses to calculate the smoothed average for the general level or magnitude of sales (alpha) and the trend component of the forecast (beta). 3.2.12.1 Example: Method 12: Exponential Smoothing with Trend and Seasonality This method is similar to Method 11, Exponential Smoothing, in that a smoothed average is calculated. Metod 12 innehåller emellertid också en term i prognosekvationen för att beräkna en jämn trend. The forecast is composed of a smoothed average that is adjusted for a linear trend. När det anges i bearbetningsalternativet justeras prognosen också för säsongsmässigt. Alpha equals the smoothing constant that is used in calculating the smoothed average for the general level or magnitude of sales. Values for alpha range from 0 to 1. Beta equals the smoothing constant that is used in calculating the smoothed average for the trend component of the forecast. Values for beta range from 0 to 1. Whether a seasonal index is applied to the forecast. Alpha and beta are independent of one another. They do not have to sum to 1.0. Minimum required sales history: One year plus the number of time periods that are required to evaluate the forecast performance (periods of best fit). When two or more years of historical data is available, the system uses two years of data in the calculations. Method 12 uses two Exponential Smoothing equations and one simple average to calculate a smoothed average, a smoothed trend, and a simple average seasonal index. An exponentially smoothed average: An exponentially smoothed trend: A simple average seasonal index: Figure 3-3 Simple Average Seasonal Index The forecast is then calculated by using the results of the three equations: L is the length of seasonality (L equals 12 months or 52 weeks). t is the current time period. m is the number of time periods into the future of the forecast. S is the multiplicative seasonal adjustment factor that is indexed to the appropriate time period. This table lists history used in the forecast calculation: This section provides an overview of Forecast Evaluations and discusses: You can select forecasting methods to generate as many as 12 forecasts for each product. Each forecasting method might create a slightly different projection. When thousands of products are forecast, a subjective decision is impractical regarding which forecast to use in the plans for each product. The system automatically evaluates performance for each forecasting method that you select and for each product that you forecast. You can select between two performance criteria: MAD and POA. MAD är ett mått på prognosfel. POA är ett mått på prognosförskjutning. Both of these performance evaluation techniques require actual sales history data for a period specified by you. The period of recent history used for evaluation is called a holdout period or period of best fit. To measure the performance of a forecasting method, the system: Uses the forecast formulas to simulate a forecast for the historical holdout period. Makes a comparison between the actual sales data and the simulated forecast for the holdout period. When you select multiple forecast methods, this same process occurs for each method. Multiple forecasts are calculated for the holdout period and compared to the known sales history for that same period. The forecasting method that produces the best match (best fit) between the forecast and the actual sales during the holdout period is recommended for use in the plans. This recommendation is specific to each product and might change each time that you generate a forecast. 3.3.1 Mean Absolute Deviation Mean Absolute Deviation (MAD) is the mean (or average) of the absolute values (or magnitude) of the deviations (or errors) between actual and forecast data. MAD är ett mått på den genomsnittliga storleken på fel som kan förväntas, med en prognosmetod och datalogistik. Eftersom absoluta värden används i beräkningen avbryter inte positiva fel negativa fel. When comparing several forecasting methods, the one with the smallest MAD is the most reliable for that product for that holdout period. When the forecast is unbiased and errors are normally distributed, a simple mathematical relationship exists between MAD and two other common measures of distribution, which are standard deviation and Mean Squared Error. For example: MAD (Sigma (Actual) ndash (Forecast)) n Standard Deviation, (sigma) cong 1.25 MAD Mean Squared Error cong ndashsigma2 This example indicates the calculation of MAD for two of the forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.1.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: Mean Absolute Deviation equals (2 1 20 10 14) 5 9.4. Based on these two choices, the Moving Average, n 4 method is recommended because it has the smaller MAD, 9.4, for the given holdout period. 3.3.2 Percent of Accuracy Percent of Accuracy (POA) is a measure of forecast bias. När prognoserna är konsekvent för höga ackumuleras lager och lagerkostnader stiger. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. I tjänster är storleken på prognosfel vanligtvis viktigare än vad som är prognostiserad bias. POA (SigmaForecast sales during holdout period) (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way. Smoothing data removes random variation and shows trends and cyclic components Inherent in the collection of data taken over time is some form of random variation. Det finns metoder för att minska avbrytandet av effekten på grund av slumpmässig variation. En ofta använd teknik inom industrin är utjämning. Denna teknik, när den tillämpas korrekt, avslöjar tydligare den underliggande trenden, säsongs - och cykliska komponenter. Det finns två olika grupper av utjämningsmetoder. Medelvärden Metoder Exponentiella utjämningsmetoder Medeltal är det enklaste sättet att smidiga data Vi ska först undersöka några medelvärdesmetoder, till exempel det enkla genomsnittet av alla tidigare data. En lagerförare vill veta hur mycket en typisk leverantör levererar i 1000 dollar-enheter. Heshe tar ett slumpmässigt urval av 12 leverantörer, vilket ger följande resultat: Beräknat medelvärde eller medelvärde av data 10. Chefen bestämmer sig för att använda detta som uppskattning av utgifter för en typisk leverantör. Är detta en bra eller dålig uppskattning Medelkvadratfel är ett sätt att bedöma hur bra en modell är Vi ska beräkna det genomsnittliga kvadratfelet. Felaktigt belopp som använts minus den uppskattade mängden. Felet kvadrerat är felet ovan, kvadrerat. SSE är summan av kvadrerade fel. MSE är medelvärdet av de kvadratiska felen. MSE-resultat till exempel Resultaten är: Fel och kvadrater Fel Uppskattningen 10 Frågan uppstår: kan vi använda medelvärdet för att prognostisera inkomst om vi misstänker en trend En titt på grafen nedan visar tydligt att vi inte borde göra det här. Genomsnittet väger alla tidigare observationer lika Sammanfattningsvis anger vi att Det enkla genomsnittet eller medelvärdet av alla tidigare observationer är enbart en användbar uppskattning för prognoser när det inte finns några trender. Om det finns trender, använd olika uppskattningar som tar hänsyn till trenden. Medeltalet väger alla tidigare observationer lika. Medelvärdet av värdena 3, 4, 5 är till exempel 4. Vi vet självklart att ett medel beräknas genom att lägga till alla värden och dela summan med antalet värden. Ett annat sätt att beräkna medelvärdet är att lägga till varje värde dividerat med antalet värden eller 33 43 53 1 1.3333 1.6667 4. Multiplikatorn 13 kallas vikten. Generellt: bar frac summa vänster (frac right) x1 left (frac right) x2,. ,, vänster (frac höger) xn. Den (vänster (frac höger)) är vikterna och de räknas naturligtvis till 1.

No comments:

Post a Comment